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ABSTRACT 

The paper discusses finite or infinite incidence planes in which an oval plays 
the role of a metric conic. The points of the oval are used as coordinates, 
and ordered couples of these coordinates give rise to a coordinatization of 
the whole plane by means of ternary structures. These ternaries are studied, 
and a few specializations and their geometric analogues are studied. 

Introduction. Projective and afline incidence planes have been studied ex- 
tensively. It is, therefore, reasonable also to consider non-euclidean planes 
based on incidence axioms alone. One way of doing this would be a restriction 
to the Bolyai-Lobachevsky plane, to the exclusion of the points on the metric 
conic and those exterior to it. Some aspects of such planes were discussed by 
L. M. Graves [2] and T. G. Ostrom [6]. Another approach replaced the metric 
conic and its polarity in the classical Cayley-Klein model by an oval and a 
polarity with respect to it in a projective incidence plane. This was done, for 
instance, by T. G. Ostrom [5] and in a series of papers by R. Baer culminating 
in [1], where the author proved that under his restrictive axioms no Bolyai 
Lobachevsky plane can be finite. Most of the investigations in these papers were 
directed at finite planes, and many of the combinatorial and number-theoretic argu- 
ments employed in them do not carry over to the infinite case. 

This paper deals with non-euclidean planes nc, that is, finite or infinite projec- 
tive incidence planes 7r in which the role of the metric conic is played by an oval 
C defined by incidence properties alone. The lines of nc are shown to correspond 
bijectively to the ordered pairs of points of C. The incidence relation is expressed 
in terms of a ternary operation on the points of C, and the result is an algebraic 
structure called a ternary, somewhat resembling M. Hall's ternary ring [3], but 
possessing also quadratic properties. 

This enables us to obtain a coordinatization of 7t c starting from C, thus gener- 
alizing the classical theory which proceeded as follows: In the real projective 
plane a nonsingular conic was designated as the metric conic. An addition and 
a multiplication of the points on the conic were defined as described, for instance, 
in [9, p. 232]. The points of the conic were the "ends" of the lines in the Cayley- 
Klein model of the Bolyai-Labachevsky plane consisting of the interior of the 
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conic. D. Hilbert [4, Appendix III] developed an "end calculus" which was the 
exact analogue of the field of the points on the metric conic under the addition 
and multiplication mentioned above. 

In our treatment we define addition and multiplication of points of C in terms 
of the ternary. These operations closely resemble the classical operations. The 
points of C are shown to form commutative loops under this addition and mul- 
tiplication. Associativity of the additive or the multiplicative loop, respectively, 
is proved to correspond to the validity of two special Pascal properties with C 
substituted for the conic. Even with these two properties and with linearity [3], 
the ternary is not necessarily r ight-or  left-distributive. This is significant 
because, with the ternary a finite field, 7r would become desarguesian and C 
a conic, in view of B. Segre's result [8]. We would then obtain the classical 
Cayley-Klein model. If  the ternary is a field of characteristic ~ 2, the coordi- 
natization developed in this paper turns out to be essentially the same as that 
used in Hilbert's "end calculus". 

A question arising naturally concerns non-euclidean collineations, that is, 
those collineations of 7r c which preserve C. They will be discussed in another 
paper. 

1. Definitions. 
We define a set of points and lines to be a non-euclidean plane 7r c if it is a 

projective plane lr, that is, satisfies the axioms I, ~I, II, and if it contains a subset 
C of points ("oval")  satisfying the axioms III. 

I. For any two distinct points there is a unique line through both. 
6I. For any two distinct lines there is a unique point lying on both. 
II. There are 4 points no 3 of which colline. 
6I is the dual of I. It is well known that the dual of II is a consequence of I, 

~I, and II. 
III. There is a nonempty set C of points such that III1, III2, 6III1 and 6III2 

hold. 
III1. Each point P of C is on just one line which contains no other point of C. 
This line is called PP, the tangent at P. We denote ~C = {PP [ P ~ C}. 
III2. No 3 points of C colline. 
6III1. Each line of 6C contains just one point which is not also on another 

tangent. 
6III2. No 3 lines of ~C concur. 
Obviously the axioms of the non-euclidean plane are self-dual. The set of all 

the points mentioned in 6III1 is C. For, by III1, each tangent has one point 
which is not on any other tangent, namely the point in C, and by 6III1 this is 
the only point. Thus, fifiC = C. 

It follows from III1 and ~III1 that a point is in C if and only if it lies on just 
one tangent. If  it lies on no tangent, it is called interior, and if it lies on two distinct 
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tangents, it is exterior. Dually, each line either belongs to 3C, or it contains 
two points of C and is called a secant, or one of its points belong to C and it 
is a stray. The set of all interior points may be considered as a generalized 
Bolyai-Lobachevsky plane. 

R. Baer [1] discussed non-euclidean planes for which he also postulated that 
every line through an interior point be a secant and that every point on a stray 
be exterior. These requirements are not a consequence of our axioms I, II and 
III. As a counter-example we observe that in PG(2, 3) the conic Xo-X12 2_x22 = 0 
obviously satisfies all requirements of C. The point (1, 0, 0) is interior, but 
xl = x2 through (1, 0, 0) is not a secant. Moreover, x~ = x2 is a stray, but 
(1, 0, 0) on it is not exterior. 

Baer showed that his planes were necessarily infinite. Our planes may be 
finite or infinite. 

2. Coordinates for rc c. 

PROPOSITION 1. C has at least 3 non-collinear points. 

Proof. Axiom II implies that the number of lines through each point of n 
is at least 3. At least one point P of zc is in C. Only one of the > 3 lines through 
P is a tangent, and hence, by III1, each of the remaining lines through P has 
to contain another point of C. These two additional distinct points cannot col- 
line with P, in view of III2. 

We label all points of C. Three of them will be called 0,1,oo(0 # 1 # oo #. 0), 
which is possible in view of Proposition 1. We denote by (p) (q) the line joining 
the points p and q, and by j x k the point of intersection of the lines j and k. 

In order to shorten the notation we will use the following definition. If  p e C 
and j is a line through p, then j x C will be p if j = (p) (p), and it will be the 
second point of intersection o f j  and C i f j  is a secant. 

Now consider a line j not through oo. Let (Figure 1) j × ( 0 ) ( ~ ) =  X, 
j × ( o o ) ( o o ) =  Y, X(1) x C = x ,  and Y(0) × C = y .  Then the points x and 
y of  C are uniquely determined by j.  Conversely, if x # oo and y # oo are 
points of  C, then by (x) (1) x (0) (oo) = X, (y) (0) x (co) (oo) = Y, a line 
j = X Y  is uniquely determined by x and y. I fX = C - (oo}, we have, therefore, 
a bijectivity between X x X and all the lines of n other than those through oo. 
In particular, we write j = [x, y] and call x and y the line coordinates of] .  

We have yet to take care of the lines through oo. Let k be such a line, and 
let k = ( n ) ( o o ) ,  n e C .  If  Q = ( 1 ) ( 1 ) x ( 0 ) ( o o ) ,  and if O(n) x C = m ,  we 
will write k = [rn]. Obviously this is a bijectivity between all the points of C 
and the set of all lines through ~ .  In particular, this makes (oo) (oo) = [0] 
and (0 ) (oo)=  [ ~ ] .  

If  P is a point of rc not on (0) (oo) and not in C, then for each x e Z there 
is just one line through P having x as its first coordinate, because for 
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I 

F i o ~  1 

~ 0  

X = (x)(1) x (0)(oo) the line XP is uniquely determined. If  y is the second 
coordinate of this line, then y depends on x and on the choice of P. Let (Figure 2) 

P 

0 c IQ 

FIOtrRE 2 

P(O)×C=c, P(oo)×C=r, ( 0 ) (0o )× (1 ) (1 )  = Q, Q(r)×C = m. Then 
P determines m and c uniquely, and conversely for each m and c from ~ there 
is a unique P. Thus y is a function of x, m, and c, and we write y = T(x, m, c). 
This is the equation of the point P. Tmay be considered as a ternary operation 
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Now let P = p c  C, but not on (0)(oo). Then we proceed as before, now 
putting r = p = c.  Furthermore, if P ~ 0 lies on (0) (oo), and if P(1) x C = b, 
then all the lines through P, except P(oo), will have the first coordinate b, and 
the equation of  P will be x = b. Thus we obtained equations for all points of 
7r, except oo. So, finally, we define x = oo to be the equation of  the point oo. 

3. The ternary. We now introduce an algebraic structure called a ternary, 
(S, T) .  The set S contains at least two distinct elements, 0 and 1, and is closed 
under the ternary operation T. Moreover, the axioms T1 through T12 hold in 
(S, T) for all a, b, c, and d in S. No claim is made as to the independence of 
the axioms. 

T1. T(O, b, c) = c. 
T2. T(a, O, c) = c. 
T3. The equation T(x, bl ,c~)= T(x, b2,c2), with bl ~ b2, has a unique 

solution x in S. 
T4. The equation T(a, b, x )= d has a unique solution x in S. 
T5. If  al ~ a2, the simultaneous equations T(al ,x ,y)  = d t  and T(a2,x,y) =d2 

have a solution for x and y in S. 

PROPOSITION 2. The solution in T5 is unique. 

Proof. Suppose there are two solutions x l , y l  and x2,y2. If  x ~ # x 2 ,  
T(a l ,x l ,  y l ) = d l  = T(al,x2,Y2); then, by T3, aa is uniquely defined, and 
a~ = a2, a contradiction. If  xl = x2, then, by T4, also Yl = Y2. 

PROPOSITION 3. I f  b # O, T(x, b, c) = d has a unique solution x. 

Proof. By T2, d = T(x, O, d), and by T3, T(x, b, c) --- T(x, O, d) has a unique 
solution x. 

PROPOSITION 4. I f  a # O, T(a,x ,c)= d has a unique solution x. 

Proof. By T1, T(0, x, c) = c. This equation, together with that of our statement, 
has a unique solution x, c by Proposition 2. 

Dm~irqmoN. For every a # 0 ,  define a -1 by T ( a , l , 1 ) =  T(a,a-l ,a) .  The 
unique existence of a-~ follows from Proposition 4. 

PROPOSITION 5. 1 - I  = 1. 
T6. For all a ~ O, T(a, 1,1) = T(a, x, a) implies T(x, 1,1) = T(x, a, x). 
This is equivalent to the statement (a-1)-1 = a. 

PROPOSITION 6. I f  a ~ O, then a-1 ~ O. 

Proof. I f  a - l = 0 ,  then, by T6, T(0 ,1 ,1)=  T(0,a,0), which, by T1, means 
1 = 0, a contradiction. 

PROPOSITION 7. a - l  = b-1 imp l i e s  a = b. 



48 R. ARTZY [March 

Proof. By T6, we have T ( b - t , l ,  1) = T(b  - 1 , a ,  b -1)  and T(b  - 1 , 1 , 1 )  = 

T ( b -  1, b, b -  1). By Proposition 4, a = b. 

DEFINITION. For b # a # 0 # b ,  wedcf ine  a b = b a  and a + b = b + a  by 
T(ab,  a -  1, a) = T(ab,  b -  1, b) = a + b. 

Unique existence of ab = ba follows from T3 and Proposition 7. 

PROPOSITION 8. a l  = la  = a i f  1 # a # O. 

T7.  T ( 1 , a - l , a )  = T ( 1 , a , a - 1 ) i f  a # 0 .  

PROPOSITION 9. aa-1  = 1 i f  1 ~ a # 0 and i f  a # a - x .  

T8. The equation T(a,  x -  1, x)  = b has at most two solutions x in S. 

PROPOSITION 10. I f  T ( a , x - l , x ) =  b has 2 dist inct  nonzero solutions x and 

y,  then x + y = b and x y  = a. 
T9. For every nonzero a there are unique p ~ 0 and q in S such that 

T(p, a -  1, a) = q and such that  T(p,  b -  i, b) = q implies a = b. 

DEFINITION. Under the assumptions of  T9, p = aa and q = a + a .  

PROPOSITION 11. 1"1 = 1. 

Proof. It  is claimed that, in the terms of  T9, a = 1 implies p = 1. Then f rom 
T(1, 1, 1) = T(1, b -  1, b) it would have to follow that b = 1. Suppose b # 1, then bl  = 1, 

by the definition of  multiplication. But, by Proposition 8, b l  = b, a contradiction. 

PROPOSITION 12. l f  a # 0 # d, then there exists a unique x sa t i s fy ing  ax  = d. 

Proof. By TS, T(d,  a-  1, a) = T ( d , x -  1, x) has at most 2 solutions. One solution is 

x = a. I f  it is single, then byT9, aa = d. I f  there is a solution x other than a, then ax  = d. 

PROPOSITION 13. I f  e # a # O, then a + x = e has a unique solution x. 

Proof. T(ax ,  a - t , a )  = e  has a unique solution ax,  by Proposition 3. By 

Proposition 12 this yields a unique x. 

DEFINITIONS. a0 = 0a = 0, a + 0 = 0 + a = a for all a in S. 

PROPOSITION 14. I f  a # 0 and ax  = O, then x = O. 

Proof. Suppose x # 0. I f  x # a, then T ( O , a - t , a )  = T(O,x  - 1 ,  x), that  is, 

x = a, a contradiction. I f  x = a, then ax  = aa = p = 0, which is impossible. 

Hence x = 0 is the only solution. 

PROPOSITION 15. a + x = a has the only solution x = O. 

Proof. Suppose x # 0 # a # x. Then T(ax ,  a-  1, a) = a. By Proposition 3, 

ax  then must be 0, and by Proposition 14, x = 0, a contradiction. Now suppose 
x = a # 0. Then T ( p , a - l , a ) =  a, which yields the impossible value p = 0. 

Finally, let a = 0. Then 0 + x = 0.  But 0 + x = x, and hence x = 0. 
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PRoPosmoN 16. (S, + )  and(S - {0},. ) are commutative loops. 
T10. x + x = a has exactly one solution x. 
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PROPOSITION 17. b + b = 0 implies b = O. 

T l l .  xx = a has the single solution x = 0 if a = 0, and no solutions or 2 
distinct solutions in S otherwise. 

T12. T(xx, m , c ) =  x + x  has the single solution x = c if m = c - l ,  and no 
solution or 2 distinct solutions in S if 0 # m # c - t .  

4. The coordinate structure as  ternary. 

THEOREM 1. (Z,T),  as defined in section 2, is a ternary satisfying T1 
through T12. 

Proof. T1, T2, T4 and T5 are obviously satisfied. For  T3 a unique point 
x will always be obtained unless bl = b2, in which case x would be oo. But oo 
is not in ~.  The construction of  a -  1 turns out to be (Figure 3): 

((1) (1) × (0) (oo)) (a) x c = a - 1  

t 

F m u ~  3 

!t 

and then T6 and T7 follow immediately. The points of  C except oo and 0 have 
exactly all the equations y = T(x, m-  1, m) for all m in Y.. The construction 

ofab and a + b is the following: 

((a) (b) × (0) (oo)) (1) × C = ab, ((a) (b) × (oo) (oo)) (o) × C = a + b, 

and these constructions also hold if a = b. T8 follows from III2; T9 from III1; 

T10, T l l  and T12 from 6III1 and 6III2. 

The converse of  Theorem I is 
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THEOREM 2. Every ternary (S, T) satisfying T1 through T12 coordinatizes 
a non-euclidean plane. 

Proof. To show the validity of I we have to consider 3 types of points whose 
equations are, respectively, x = a, x = ~ ,  y = T(x, m, c), for a, m, c in S. Now, 
x = a and x = b (a ¢ b) are joined by the line [oo] only, and so are x = a and 
x = oo. The points x = a and y = T(x, m, c) are joined only by Ia, T(a, m, c)], 
and x = oo and y = T(x, m, c) lie only on [rn]. The points y = T(x, m, c) 
and y =  T(x, n,d)(m ~ n) are on a unique line, by T3. Finally y = T(x, m, c) 
and y = T(x,m,d)(c  ~ d) lie on [rn], and by T4 there can be no other 
join. 

For  ~I we have to consider 3 types of  lines: [a, b], [m], and [oo] .  The lines 
im] and [n] (m ~ n) and the lines I-m] and [oo] intersect at x = oo only. The 

lines [m] and I-a, b] intersect at y = T(x, m, c) with b = T(a, m, c), which, in 
view of  T4, determines c uniquely. The lines [oo] and Ia, b] meet at x = a, and 

so do I-a, b] and la,  b ']  when b ~ b ' .  The lines I-a, b] and Ia ' ,  b'],  with a ~ a ' ,  
intersect at the unique point y = T(x, m, c), where m and c are uniquely determined 
by T5 and Proposition 2 applied to the simultaneous equations b = T(a, m, c) 
and b' = T(a', m, c). 

II is satisfied because the 4 points x = 0, y = 0, x = 1, y = 1 are all distinct 
and no 3 of them colline. Collinearity of any three of them would lead to the 

contradiction 0 = 1. 

Concerning III1: The tangent at x = 0 is [0, 0] .  Every other line [0, p] also 
goes through y = T(x,p-l ,p),  and i'oo] also passes through x = oo. No other 
lines contain x = 0. The tangent at x = oo is [0]. The only other lines through 
x = oo are of  the form [p] with p ~ 0, passing through y = T(x,p,p- 1), and 

[oo] passing through x = 0. Finally, the tangent at y = T(x, n -1, n), with 
n ~  0, is [nn, n + n] by T9. The line [n -1]  is no tangent because it con- 
tains also x = oo. 

Concerning 1112: The line [0, b], b ~ 0, passes through 2 points of  C, x = 0 
and y = T(x, b -1, b). The line [0,0] passes through the single point x = 0. 

The line I'a, hi, with a ~ 0, goes through y = T(x, m- l , rn )  with 
b = T(a,m -I, m), which in view of T8 yields at most 2 solutions. The line [oo] 

contains 2 points of  C, x = 0 and x = oo ; the line im],  m ¢ 0, has 2 points, 
x = oo and y = T(x, m, m- 1), and the line [0] only one point, x = oo. 

Concerning ~5III1: Tangents can be only of the types [13] or Inn, n + hi. The 
tangent [0] passes through ~ ,  and no other tangent passes through oo. Every 
other point on [0] has an equation of the form y = q. Through the point y = q 
there is exactly one tangent other than [0], namely [aa, a + a] with a + a = q. 
Since, in view of T10, there is exactly one such a, each point y = q lies on just 
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2 tangents. The tangent [nn, n + n] with n # 0 passes through the point 
y = T(x, n -  1, n) in C. This point does not lie on [0], nor can it lie on [mm, m + m] 
with m ~ n, in view of  T12. Every point not in C, lying on Inn, n + n], is either 
x = nn or y --- n + n or of  the type y = T(x, m, c) with n + n = T(nn, m, c) and 
m-  1 # c. Through x = nn there is exactly one other tangent Inn, n' + n ' ]  because 
the equation zz  = n (n # 0) has, by T l l ,  a solution z = n'  # n. Through y = n + n 
there is the second tangent [0]. The point y = T(x, m, c) (m ~ 0) lies on a tangent 
[n 'n ' ,  n'  + n ' ]  other than Inn, n + n] if the equation z + z = T(zz,  m, c) has the 
solution z = n' besides z = n. But, since m -1 # c, this is exactly the case in view 
of  T12. Finally, the tangent [0, 0] passes through x = 0. Every other point on it 
has an equation y = T(x,m,O) with m # 0. Again z + z = T(zz ,  m,O), by T12, 
has a solution z in addition to z = 0, and hence another tangent exists through 
this point. 

Concerning 61112: The point x = p can lie only on the tangents [aa, a + a] 
with aa = p. By T l l ,  there are at most 2 values of  a, and therefore at most 2 
tangents through x = p .  Through x =  oo there is only the tangent [0]. 

Through y = q the only tangents are [0] and [aa, a + a], with a + a = q. Since, 
in view of  T10, there is exactly one a, there are just 2 tangents. Finally, the point 
y = T(x ,m ,  c) (m # 0) lies on the only tangents [a, T(a, m, c)] with T(aa, m, c) 
= a + a. By T12, there are at most 2 values a, and hence at most 2 tangents. This 
completes the proof. 

Now that the distinction between ~ and S has lost its significance, we will use S 
for both. 

5. Specializations of the ternary. We will study a few instances of  non- 
euclidean planes with special restrictions on the ternary. 

DEFINITION. We say that nc has the Pascal property with respect to the line 
j as axis if for every 6 points Pk, Qk (k = 1,2, 3) of C the following holds: If  

P1Q2 x P2Qt and P2Q3 × P3Q2 lie on j,  so does also P3Q1 × PIQ3. 

THEOREM 3. (S, + )  is an abelian group i f  and only i f  Tr c has the Pascal pro- 
perty with respect to the axis (ov)(~) .  

Proof. According to the construction described in the proof  of  Theorem 1, 

(a)(b) × (0)(a + b) and (b)(c) × (0)(b + c) lie on (ov)(oo). The Pascal prooperty 
for the axis (ov ) (~ )  holds if and only if (a)(b + c) × (a + b)(e) also lies on this 

axis for all choices of a, b, c in S. But this means additive associativity in S. 
By Proposition 16, (S, + )  then is an abelian group. 

THEOREM 4. (S - {0}, • ) is an abelian group i f  and only i f  in n c the Pascal 
property with axis (0)(oo) holds. 
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Proof. Again, let a,b, c e S ,  all nonzero. The points (a) (b)x(1) (ab)  and 
(b)(c) x (1)(bc) lie on (0)(0o). The Pascal property for the axis (0)(oo) holds if 
and only if (a)(bc) x (ab)(c) also lies on (0)(oo), that is, (ab)c = a(bc). 

TrmOREM 5. (S ,+ ,  ") is not necessarily left- or right-distributive, even i f  
(S, +) and (S - {0}," ) are groups. 

Proof. We employ a counter-example which we borrow from G. Pickert 
[7, p. 93]. Let (S, + ,  • ) be the real field, and use the usual addition, but a multipli- 
cation • such that 

2ab if a and b are negative 
b a / 

I a b  otherwise. 

Let T(a, b,c) = a • b + c. Then we assert that T1 through T12 are satisfied. T1, 
2, 4, 6, 7, 10 and 11 are trivially fulfilled. For a proof of T3 and T5 see [7]. A veri- 
fication for T8, 9 and 12 is more complicated and can be done by straightforward, 
though cumbersome, computation. In this example addition and multiplication 
are associative. However, as shown in [7], the distributive law does not hold. 

On the other hand, we have obviously 

TrmOREM 6. I f  (S ,T)  is linear, that is, T(a ,b ,c )= ab + c for all a ,b,c  in S, 
and i f  (S, +, • ) is a field of  characteristic ~ 2, then T1 through T12 are valid. 

In this case Hilbert's arguments [4, appendix III] apply, and rr is a projective 
plane over a field, in the classical sense. 

THEOREM 7. I f  (S, T) is linear and (S, +, • ) a field of characteristic ~ 2, 
then for the lines Ix, y] of 6C the equation y 2 =  4x holds. 

Proof. The lines are of the form [mm, m + m]. Thus y = 2m and x = (y/2) 2. 
Theorem 7, in a sense, may be considered a generalization of B. Segre's 

theorem [8]. 
A final remark concerns the connection between the ternaries and M. Hall's 

ternary rings [3]. Comparison of their axioms yields the fact that a ternary be- 
comes a ternary ring if T(s, 1,0)= T(1, s, 0 )=  s for all s in S. This requirement 
corresponds to Pascal properties with axes through the points y = T(x,s,O), 
and it assures the coordinatization of the plane dual to n by means of (S, T). 
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